Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.22.558628

ABSTRACT

Nirmatrelvir was the first protease inhibitor (PI) specifically developed against the SARS-CoV-2 main protease (3CLpro/Mpro) and licensed for clinical use. As SARS-CoV-2 continues to spread, variants resistant to nirmatrelvir and other currently available treatments are likely to arise. This study aimed to identify and characterize mutations that confer resistance to nirmatrelvir. To safely generate Mpro resistance mutations, we passaged a previously developed chimeric vesicular stomatitis virus (VSV-Mpro) with increasing, yet suboptimal concentrations of nirmatrelvir, using Wuhan-1 and Omicron Mpro variants, and selected a large set of mutants. Some mutations are frequently present in GISAID, suggesting their relevance in SARS-CoV-2. The resistance phenotype of a subset of mutations was characterized against clinically available PIs (nirmatrelvir and ensitrelvir) with cell-based and biochemical assays. Moreover, we showed the putative molecular mechanism of resistance based on in silico molecular modelling. These findings will help to understand SARS-CoV-2 protease-inhibitor-resistance mechanisms, the relevance of specific in the clinic and thereby inform treatment decisions.


Subject(s)
Vesicular Stomatitis
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.25.530000

ABSTRACT

Resistance to nirmatrelvir (Paxlovid) has been shown by multiple groups and may already exist in clinical SARS-CoV-2 isolates. Here a panel of SARS-CoV-2 main protease (Mpro) variants and a robust cell-based assay are used to compare the resistance profiles of nirmatrelvir, ensitrelvir, and FB2001. The results reveal distinct resistance mechanisms (fingerprints) and indicate that these next-generation drugs have the potential to be effective against nirmatrelvir-resistant variants and vice versa.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.07.503099

ABSTRACT

First-generation vaccines and drugs have helped reduce disease severity and blunt the spread of SARS-CoV-2. However, ongoing virus transmission and evolution and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease (Mpro/3CLpro) of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in Mpro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional inhibitor in clinical development, ensitrelvir, shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that nirmatrelvir-resisting variants have pre-existed the introduction of this drug into the human population and are capable of spreading. A similarly strong argument can be made for ensitrelvir. These results caution against broad administration of protease inhibitors as stand-alone therapies and encourage the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles.

4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.09.375139

ABSTRACT

The main protease, Mpro, of SARS-CoV-2 is required to cleave the viral polyprotein into precise functional units for virus replication and pathogenesis. Here we demonstrate a quantitative reporter for Mpro function in living cells, in which protease inhibition by genetic or chemical methods results in strong eGFP fluorescence. This robust gain-of-function system readily distinguishes between inhibitor potencies and can be scaled-up to high-throughput platforms for drug testing.

SELECTION OF CITATIONS
SEARCH DETAIL